Abstract

This work devotes to investigate synthesis and electrical properties of spinel MgCo2O4 that is considered as a candidate of the cathode materials of magnesium-ion batteries in future. Samples were synthesized by two types of techniques: solid-state reaction and wet process. The crystal structures of the samples were analyzed by X-ray diffraction, and their electrical conductivities were obtained through the dc resistance and ac impedance measurements. By solid-state reaction, sample of a single MgCo2O4 phase was not obtained; a sample synthesized at 800 � C for 24 h after milling of Co3O4 and MgO powder was comprised of dual phases of spinel-type and rocksalt-type structures, and samples synthesized at temperatures higher than 880 � C showed a single rocksalt-type phase without electrical conductance. The former sample showed p-type semiconducting behavior as well as spinel-type Co3O4, but its electrical conductivity around room temperature was shown to exceed that of Co3O4. In contrast, a sample consisting of a single spinel-type phase was successfully synthesized by wet process, which exhibited an electrical conductivity of the order 10 � 2 Scm � 1 , being much higher than those of the samples synthesized by solid-state reaction. Thus, substitution of Co 2þ in Co3O4 with Mg 2þ is found to enhance the electrical conductivity of the spinel-type phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.