Abstract

Spiky nanoparticles exhibit higher overall plasmonic excitation cross sections than their nonspiky peers. In this work, we demonstrate a two-step seed-mediated growth method to synthesize a new class of spiky Ag–Au octahedral nanoparticles with the aid of a high molecular weight poly(vinylpyrrolidone) polymer. The length of the nanospikes can be controlled from 10 to 130 nm with sharp tips by varying the amount of gold precursor added and the injection rates. Spatially resolved electron energy-loss spectroscopy (EELS) study and finite-difference time-domain (FDTD) simulations on individual spiky Ag–Au nanoparticles illustrate multipolar plasmonic responses. While the octahedral core retains its intrinsic plasmon response, the spike exhibits a hybridized dipolar surface plasmon resonance at lower energy. With increasing spike length from 50 to 130 nm, the surface plasmon of the spike can be tuned from 1.16 to 0.78 eV. The electric field at the spike region increases rapidly with increasing spike length, with a 104 field enhancement achieved at the tips of 130-nm spike. The results highlight that it is important to synthesize long spikes (>50 nm) on nanoparticles to achieve strong electric field enhancement. A hypothesis for the formation of sharp spikes is proposed based on our studies using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (TEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.