Abstract

Recently, we demonstrated potential anti-inflammatory effects of sorbicillinoids isolated from marine fungi. Here, we report the synthesis of a series of new sorbicillinoid analogues and assessed their anti-inflammatory activities. Our results reveal that side chain substitution with (E)-2-butenoyl, (E)-3-(4-fluorophenyl)-2-propenoyl, and (E)-3-(3,4,5-trimethoxyphenyl)-2-propenoyl significantly enhanced the inhibitory effects of the derivatives on nitric oxide (NO) production and inducible NO synthesis (iNOS) expression stimulated by lipopolysaccharides (LPS) in mouse macrophage. Further chemical derivatization shows that the monomethylresorcinol skeleton worked better than the dimethylresorcinol skeleton in inhibiting LPS-induced inflammatory response in cultured cells. Among the 29 synthesized sorbicillinoid analogues, compounds 4b and 12b exhibited the strongest anti-inflammatory activities, holding the promise of being developed into lead compounds that can be explored as potent anti-inflammation agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call