Abstract
In this work, un-doped and Sn-doped hierarchical ZnO particles with high dispersity were successfully fabricated by a facile liquid reaction. The prepared samples are characterised by X-ray diffraction and scanning electron microscopy. The as-synthesised hierarchical ZnO particles with a diameter of ∼1.5 μm were obtained by considerably intersecting thin nanosheets of ∼20 nm thickness. The morphology of ZnO structures can be varied by adjusting reaction parameters, e.g. reaction temperature, calcination temperature, and dopant concentration. On the basis of experimental results, the gas-sensing measurement displays that the sensor based on Sn-doped ZnO microstructures have a low detection of 10 ppm ethanol at an operational temperature of 250°C, demonstrating its outstanding gas-sensing performance. Therefore, the flower-like Sn-doped ZnO have prospective applications in a multifunction ethanol sensor. Moreover, the fabrication method reported in the work is facile, flexible and operable, it is possible to extend to synthesise other types of metal oxide-based applications in various fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.