Abstract

A series of Sm3+ and Dy3+ doped LaBWO6 phosphors were synthesized by high temperature solid state reaction. Recorded XRD patterns proved that the titled compound in a single phase has been obtained. Sm3+ and Dy3+ doped LaBWO6 could emit orange and white light, respectively. The optimal doping concentration of Sm3+ or Dy3+ was experimentally ascertained to be 6mol%. The critical distance of energy transfer for Sm3+ or Dy3+ doped sample is 1.540nm. In addition, there is no cross energy transfer between the Sm3+ and Dy3+ ions in the co-doped samples. The results indicated that the electric dipole–dipole interaction is predominant energy transfer mechanism for concentration quenching of Sm3+ or Dy3+ doped LaBWO6 phosphor. The charge transfer band was observed in the excitation spectra of Sm3+ or Dy3+ doped LaBWO6 phosphors. Present investigation indicated that Sm3+ and Dy3+ doped LaBWO6 can be applied in solid state lighting and LaBWO6 is a promising host for display applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.