Abstract

Rational design and fabrication of suitable optical absorbing agents (OAAs) are of great significance for state-of-the-art photothermal cancer therapy. Copper selenides have recently emerged as a type of promising photothermal operators thanks to their engineered effortlessness, high carrier concentration, and superior photothermal transformation. Nevertheless, the further in vivo applications are hampered owing to their poor biocompatibility and hydrophobicity. Herein, we synthesized the judicious structure of Cu2-xSe nanospheres coated with mesoporous silica for improving their biocompatibility and hydrophilicity. The Cu2-xSe@mSiO2 core–shell nanospheres were studied by scanning/transmission electron microscopy (SEM/TEM), X-ray (XRD and XPS), and UV–Visible techniques. Such nanocomposite achieved great ability in photothermal removal of cancer cells with little toxicity. The cell death mechanism has been investigated through typical biochemical assays including acridine orange and ethidium bromide (AO-EB), flowcytometry, and nuclear staining. In addition, the cell cycle arrest in human gastric cancer cells (GCCs) has also been evaluated. Strikingly, the in vivo chemo-photothermal therapy of as-prepared Cu2-xSe@mSiO2 toward GCCs confirms the excellent antitumor activity of the core-shell nanospheres under near-infrared radiation (NIR) radiation. It is firmly believed that the Cu2-xSe@mSiO2 nanocomposites hold great potential to function as OAAs for NIR mediated treatment and care of gastric cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.