Abstract

A facile solution method for the synthesis of single-crystal copper indium gallium diselenide (CIGS) nanotubes was developed by using anodic aluminum oxide (AAO) as morphology directing template and triethylenetetramine as both reducing agent and effective chelating agent. The crystal structure, morphology, elemental composition of the as-obtained CIGS nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The as-obtained CIGS nanotubes have a diameter about 200 nm and a thickness of 30 nm. The proposed synthesis strategy developed in this work may be used as a general process for other metal chalcogenides nanotubes and may have a bright application prospects in high efficiency, yet low cost photovoltaic areas in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.