Abstract
Two-dimensional Cu2FeSnS4 (CFTS) nanosheets with exposed high-energy facets (111) have been synthesized by a facile, scalable, and cost-effective one-pot heating process. The CFTS phase formation is confirmed by both X-ray diffraction and Raman spectroscopy. The formation mechanism of exposed high-energy facet CFTS growth is proposed and its electrochemical and photoelectrochemical properties are investigated in detail to reveal the origin of the anisotropic effect of the high-energy facets. Dye-sensitized solar cells (DSSC) achieve a favorable power conversion efficiency of 5.92% when employing CFTS thin film as a counter electrode, suggesting its potential as a cost-effective substitute for Pt in DSSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.