Abstract

Plasmon excitation of Ag seed particles with 600-750 nm light in the presence of Ag(+) and trisodium citrate was used to synthesize penta-twinned nanorods. Importantly, the excitation wavelength can be used to control the reaction rate and, consequently, the aspect ratio of the nanorods. When the excitation wavelength is red-shifted from the surface plasmon resonance of the spherical seed particles, the rate of Ag(+) reduction becomes slower and more kinetically controlled. Such conditions favor the deposition of silver onto the tips of the growing nanorods as compared to their sides, resulting in the generation of higher aspect ratio rods. However, control experiments reveal that there is only a range of low energy excitation wavelengths (between 600 and 750 nm) that yields monodisperse nanorods. This study further highlights the utility of using wavelength to control the size and shape of growing nanoparticles using plasmon-mediated methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.