Abstract

Silver nanoparticles were successfully incorporated into a melamine-based polymer, resulting in the synthesis of (Ag NPs@Bipy-PAN) through a reverse double solvent approach. The synthesised Ag NPs@Bipy-PAN polymer underwent extensive characterisation through Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and Energy Dispersive X-ray (EDX) and Thermal Gravimetric Analysis. PXRD analysis confirmed the successful encapsulation of Ag nanoparticles and provided insights into the amorphous nature of the polymer following encapsulation. SEM and EDX analyses further corroborated the presence and distribution of Ag nanoparticles on the polymer surface. The biological efficacy of the Ag NPs@Bipy-PAN polymer was evaluated through antibacterial, anti-breast cancer, and biocompatibility assays. The results demonstrated notable antibacterial and anticancer activities, with significant efficacy against bacterial strains and breast cancer cells. Biocompatibility assessments indicated acceptable compatibility, particularly at a concentration of 2.5 mg/mL, compared to untreated control cells. These findings suggest that Ag NPs@Bipy-PAN has considerable potential as a candidate for cancer-targeted and antimicrobial drug delivery systems. The incorporation of silver nanoparticles into the melamine-based polymer enhances the safety profile of these systems in in vivo conditions, making them a viable option for advanced therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.