Abstract

This paper reports on the fabrication of material comprised of chitosan stabilized silver nanoparticles on the carbon paste and its electro-catalytic reduction toward 4-nitroaniline. The synthesized material was obtained when AgNO3 was mixed with chitosan as a stabilizing agent and NaBH4 as a reducing agent. The developed Chitosan-AgNPs has been confirmed using UV–Vis spectroscopy, X-Ray diffraction analysis, scanning electron microscopy (SEM) and infrared spectroscopy. The synthesized chitosan-Ag NPs exhibit particle size around 51 nm. To build a voltammetric sensor (Chitosan-Ag NPs/CPE), a carbon paste electrode has immersed in the liquid suspension of chitosan-Ag NPs, thus, it could be employed for electro-catalytic reduction of 4-NA in 0.1 M Britton-Robinson buffer solution (B-R, pH 2). Therefore, the reduction over-potential of 4-NA shifted from −752.26 mV at CPE to −304 mV at chitosan-Ag NPs/CPE, and then showing a surface controlled process with the catalytic rate constant (Kcat) of 0.125 × 10−3 M−1 s−1 and a coefficient of diffusion (D) of 2.20 × 10−6 cm2 s−1 with an enhanced current response. Under optimized conditions, the electro-catalytic reduction peak current of 4-NA increased linearly with increasing of 4-NA concentration over the range of 1 μM to 0.5 mM (R2 = 0.9866) with a detection limit of 0.86 μM (3 × Sb/P).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.