Abstract
This paper reports the synthesis of structurally well-defined silica–polystyrene (SiO 2@PS) hybrid nanoparticles using a thiol-lactam-initiated, radical-polymerization technique. The surface of silica particles, 80 nm in size, were functionalized with (3-mercaptopropyl) trimethoxysilane and used as seeds in the polymerization of styrene in the presence of butyrolactam. 1H nuclear magnetic resonance and X-ray photoelectron spectroscopy showed that the thiol groups on the SiO 2 surface could initiate polymerization with the aid of butyrolactam. Transmission electron microscopy showed that the hybrid particles had uniform core–shell morphologies. The molecular weight of grafted PS increased with increasing polymerization time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.