Abstract
In this study, we have developed an efficient method for silacycle synthesis using metal hydride hydrogen atom transfer (MHAT) and radical-polar crossover (RPC) mechanism. Allylic silanols were synthesized via one-step condensation and then cyclized under mild conditions using N-fluoropyridinium tetrafluoroborate (Me3NFPY·BF4) as the oxidant under cobalt catalysis. This approach yielded five-, six-, and seven-membered silacycles with high selectivity, with the six-membered rings being the favored products. Density functional theory (DFT) calculations provided valuable insights into the reaction mechanisms and highlighted the role of ring strain in determining product selectivity. This study demonstrated the effectiveness of combining MHAT/RPC methodologies with silicon tethering, thus offering a robust platform for expanding the use of silicon-based strategies in synthetic chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.