Abstract

In this work, synthesising of SiC nanoparticles by mechanical milling was studied. The influence of ball to powder ratios, milling speeds and milling times in three levels on the specific surface area of SiC particles using central composite design was investigated. The statistical significance of the independent variables and their dual interactions were analysed. The specific surface area and morphology of SiC particles were characterised using a laser particle size analyser and scanning electron microscope, respectively. It was found that milling speed is the most important parameter for the conversion of SiC particles from micro-sized to nanosized powders. The morphology and specific surface area of SiC particles are almost unchanged at the milling speed of 100 rpm. The specific surface area substantially increased from 0.0643 to 3.59 m2/g with increasing the milling speed from 100 to 300 rpm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call