Abstract

Fabricating covalent organic frameworks with different morphologies based on the same structural motifs is both interesting and challenging. Here, a TTA-TFP-COF was synthesized by both solvothermal and room temperature methods, with 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (TTA) and 1,3,5-tris(4-formylphenyl)-benzene (TFP) as raw material. Using different synthesis conditions and adding aniline and benzaldehyde as regulators in the synthesis process, we found that these processes could slow down the reaction speed, increase the exchange and metathesis reactions of dynamic reversible reactions, and improve the reversibility of the reaction system. Thus, controllable synthesis of TTA-TFP-COF with different morphologies, including micro-particles, hollow tubes with controllable diameters, and micro-flowers was achieved. Our further study found that metal ions, Fe3+ and Cr3+ ions, could coordinate with N and O in TTA-TFP-COF and partially destroy the structure of TTA-TFP-COF. The particle size of the TTA-TFP-COF became smaller, thus resulting in the decrease of the light scattering intensity of the COF. An excellent linear relationship exists between the light scattering changes (ΔI) and metal ions concentration (c) from 2.0 to 350.0 μM for Fe3+ and 40.0–800.0 μM for Cr3+, respectively. Thus, rapid and selective analytical methods for detecting metal ions were developed by TTA-TFP-COF here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call