Abstract

Acute pancreatitis (AP) have been documented to have severe impact on pancreatic function. Frequent incidence of AP can result in chronic pancreatitis and thereby it can increase the probability of pancreatic cancers. This study intended to examine the effect of selenium nanoparticles (Se-NPs) synthesized from Coleus forskohlii leaf extract on pancreatic function and AP in rat. Primarily, Se-NPs was fabricated using the C. forskohlii leaf extract. The synthesized nanomaterial was characterized through UV-visible, XRD, and FTIR spectroscopies. Notably, the zeta potential of Se-NPs was found to be -32.8 mV with a polydispersity index (PDI) of 0.18. Morphological analysis on SEM unveiled the spherical shape of Se-NP with an average particle size of 12.69 nm. Strikingly, cytotoxicity analysis on pancreatic cancer and normal cells unveiled the concentration-dependent toxicity profile. However, IC 50 value is lower in normal pancreatic cell lines in comparison to pancreatic cancer cells lines. Assessment of Se-NPs on AP rats revealed the positive impact of Se-NPs. It effectively decreased the amount of lipase, amylase, IL-1β, MDA, NO, and Bcl-2 while increased the glucose, insulin, HOMA-β and antioxidant potential in AP rats. In addition, an evaluation of Se-NPs in the pancreatic functions revealed the non-harmful effect of Se-NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call