Abstract

Development of a cost-effective oxygen evolution reaction (OER) catalyst for hydrogen production from water has attracted the attention of scientists due to its potential to solve current environmental and energy issues, such as CO2 emissions and depletion of fossil fuels. In this paper, we report a facile synthesis to develop cobalt-manganese-oxide (MnxCo3−xO4, CMO) nanorods via an oxalate precipitation method followed by annealing at different temperatures. Importantly, morphology and surface area of the CMO nanorods, which are directly related to the OER activity, can be precisely controlled by changing annealing temperatures. The CMO nanorods engineered by oxalate precipitation and subsequent heat treatment show promising OER catalytic performance, such as a small overpotential of 365 mV for generating a current density of 10 mA cm−2, a low Tafel slope of 50.6 mV dec−1, and excellent long-term stability in alkaline media. Electrochemical properties combined with materials characterization provide insightful information on the OER mechanism of the CMO nanorods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.