Abstract
Aminoglycosides (AGs) represent a large group of pseudoglycoside natural products, in which several different sugar moieties are harnessed to an aminocyclitol core. AGs constitute a major class of antibiotics that target the prokaryotic ribosome of many problematic pathogens. Hundreds of AGs have been isolated to date, with 1,3-diaminocyclohexanetriol, known as 2-deoxystreptamine (2-DOS), being the most abundant aglycon core. However, owning to their diverse and complex architecture, all AG-based drugs are either natural substances or analogues prepared by late-stage modifications. Synthetic approaches to AGs are rare and lengthy; most studies involve semi-synthetic reunion of modified fragments. Here we report a bottom-up chemical synthesis of the 2-DOS-based AG antibiotic ribostamycin, which proceeds in ten linear operations from benzene. A key enabling transformation involves a Cu-catalyzed, enantioselective, dearomative hydroamination, which set the stage for the rapid and selective introduction of the remaining 2-DOS heteroatom functionality. This work demonstrates how the combination of a tailored, dearomative logic and strategic use of subsequent olefin functionalizations can provide practical and concise access to the AG class of compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.