Abstract

Abstract Three novel rhodium complexes, with l-tyrosine (l-Tyr), l-arginine (l-Arg), or 2,4-diamino-6-phenyl-1,3,5-triazine (Dpt) as a ligand, named as [Rh(cod)(l-Tyr)], [Rh(cod)(l-Arg)], and [Rh(cod)(Dpt)2], respectively, had been synthesized for catalyzing the polymerization of phenylacetylene. Their yields were 62.34, 54.87, and 58.21%, respectively, by the most suitable synthesis conditions at 25°C for 4 h. The structures and purity of these complexes were proved by 1H NMR, element analysis, and scanning electron microscope (SEM). It has been examined that phenylacetylene could be polymerized by the three complexes as catalysts with high degrees of polymerization (n = 368, 385, and 664, respectively) and yields (about 87.62, 88.39, and 59.67%, respectively). In conclusion, compared with traditional [Rh–N] type catalysts, the novel [N–Rh–N] type catalyst ([Rh(cod)(Dpt)2]) gained better catalytic performance. By comparing the yield, Mw, and degree of their polymerization, the polymerization mechanism was found under the [N–Rh–N] type rhodium catalyst system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.