Abstract

We developed a nanoparticulate Rhizopus arrhizus lipase formulation to enhance its activity and to increase the conversion yield of lipids into fatty acid methyl esters (FAME, a.k.a., biodiesel). More than 95% purity of the lipase was achieved in a two-step purification. Nanoparticle formulation was afforded by co-lyophilization of the lipase with methyl-β-cyclodextrin (MβCD), an established lyoprotectant. Scanning electron microscopy and dynamic light scattering measurements showed a size of 75–200 nm for the nanoparticles depending on the ratio of lipase-to-MβCD employed during co-lyophilization. Fourier transform infrared spectroscopic analysis by Gaussian curve fitting of the resolution-enhanced amide I region of lyophilized and nanoparticulate lipase indicated a more native-like secondary structure in the latter. A 98% substrate-to-FAME conversion was achieved in 10 h in n-hexane by lipase nanoparticles, whereas the crude and lyophilized enzyme showed 65 and 70% conversion in 18 h, respectively. In t...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call