Abstract

Bioinspired underwater super-oil-wettability (superoleophilic/superoleophobic) properties are emerging as a potential avenue for developing smart materials for addressing issues related to healthcare, environment, energy, etc. However, the inherent poor durability of the materials that are mostly developed using polymeric hydrogel, metal oxide coatings and electrostatic multilayers often challenges the application of these wettability properties in practical scenarios. Here, 'amine-reactive' polymeric multilayers of nano-complex were developed to fabricate 'internal' underwater superoleophobic/superoleophilic coatings with impeccable physical/chemical durability. This allows the super-wetting properties to exist beyond the surface of the material and remain intact even after severe physical damage including erosion of the material and continuous exposure to an artificial-marine environment for more than 80 days. Moreover, this current design allowed for independent revalidation of some key hypotheses with direct experimental demonstrations, and provided a basis to develop highly durable super-oil-wettability properties under water. It is believed that this contemporary study will make a worthwhile contribution on developing multifunctional materials for widespread practical applications by exploiting these super-oil-wetting properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.