Abstract

Pb(II) is a representative heavy metal in industrial wastewater, which may frequently cause serious hazard to living organisms. In this study, comparative studies between alginate nanoparticles (AN) and quercetin-decorated alginate nanoparticles (Q-AN) were investigated for Pb(II) ion adsorption. Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC). The main operating conditions such as pH, initial concentration of Pb(II), and co-existing metal ions were also investigated using a batch experiment. AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles. It revealed that when initial concentration of Pb(II) is between 250 and 1250 mg L−1, the adsorption rate and equilibrium adsorption were increased with the increase of pH from 2 to 7. The maximum adsorption capacities of 147.02 and 140.37 mg L−1 were achieved by AN and Q-AN, respectively, with 0.2 g adsorbents in 1000 mg L−1 Pb(II) at pH 7. The adsorption rate of Pb(II) was little influenced by the co-existing metal ions, such as Mn(II), Co(II), and Cd(II). Desorption experiments showed that Q-AN possessed a higher desorption rate than AN, which were 90.07 and 83.26 %, respectively. AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

Highlights

  • The unique nature of lead (Pb), high malleability, low melting point, and strong resistance to corrosion, provides its widespread application in various industries [1]

  • It illustrated the influence of quercetin to the crystal structure of Q-alginate nanoparticles (AN)

  • It is presumed that the hydroxyl groups in quercetin can form an intermolecular hydrogen bond with alginate and share the coordination site in Ca2+ with it as well

Read more

Summary

Introduction

The unique nature of lead (Pb), high malleability, low melting point, and strong resistance to corrosion, provides its widespread application in various industries [1]. The methods have been applied for Pb(II) removal in contaminated water mainly including chemical precipitation, electrochemical reduction, ionexchange, membrane separation, and sorption [6, 7]. Among these technologies, adsorption is one of the economic and efficient methods for removal of heavy metal from wastewaters. Nanomaterials have extremely small size and high surface area to volume ratio that provided immense scope and opportunities for water decontamination [8, 9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call