Abstract
Unlike transition metal oxides and sulfides, transition metal-based selenides display higher electrical conductivity, more electroactive unsaturated edge sites, and better chemical stability, which have found extensive usage in electrocatalysis. In this work, simple hydrothermal and solvothermal procedures were employed to synthesize quaternary (Ni, Co, Cu)Se2 nanosheet arrays on carbon cloth (CC) to measure glucose. The conductivity of the material can be effectively elevated by adding Se element to form selenides, and the synergistic effect between the three selenides can improve the electrocatalytic performance. Consequently, in the ranges of 0.01–600 μM and 600–9000 μM, respectively, the current response of the synthesized material to glucose concentration exhibited linear relationships. The sensor demonstrated excellent sensitivity and a low detection limit of 5.82 nM. Furthermore, the practical applicability of the constructed biosensor was proved by using it to quantify the amount of glucose in human serum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.