Abstract
The present paper deals with the formulation of novel closed-form algorithms for the kinematic synthesis of quasi-constant transmission ratio planar four-bar and slider–crank linkages. The algorithms are specific for both infinitesimal and finite displacements. In the first case, the approach is based on the use of kinematic loci, such as centrodes, inflection circle, and cubic of stationary curvature, as well as Euler–Savary equation. In the second case, the design equations follow from the application of Chebyshev min–max optimality criterion. These algorithms are aimed to obtain, within a given range of motion, a quasi-constant transmission ratio between the driving and driven links. The numerical examples discussed allow a direct comparison of structural errors for mechanisms designed with different methodologies, such as infinitesimal Burmester theory and the Chebyshev optimality criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.