Abstract

Two new series of C-nucleosidic ATP mimics have been synthesized using an efficient and versatile synthetic pathway. These compounds were designed as FGFR3 inhibitors using purine as a central scaffold. The two substituents, a polyhydroxylated ribose mimic and a lipophilic moiety, were linked either in position 2 or 6 of the purine ring in order to explore any possible binding mode. All the compounds were able to inhibit FGFR3 kinase activity at a concentration of 50 μM. Unexpectedly, the best inhibitor was found to be one of the synthetic intermediates 13 bearing an iodine atom in position 2. Docking studies have confirmed its location in the ATP binding site and revealed halogen bonding among key interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.