Abstract

Abstract A new route of synthesis of propylene carbonate from carbon dioxide and o -chloropropanol was studied. Catalytic activity of several inorganic solid bases and an organic amine was compared for the reaction. The results show that potassium carbonate and triethylamine both exhibit high activity. The catalytic system of K 2 CO 3 -N(Et) 3 has higher propylene carbonate yield than that of either K 2 CO 3 or N(Et) 3 itself. Under the optimal reaction conditions, 98% o -chloropropanol conversion and 95% propylene carbonate selectivity were obtained on K 2 CO 3 -N(Et) 3 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call