Abstract

Heteroatoms doped carbon-based materials have attracted abundant attention as an anode material in high-energy density and low-cost sodium ions batteries (SIBs). However, the low initial Coulombic efficiency (ICE) resulted from the irreversible Na trapping and the formation of solid electrolyte interphase (SEI) is denounced in the practical application. In this work, presodiated B and N co-doped carbons are fabricated by a facial one-step synthetic process employing graphitic carbon nitride (g-C3N4) as precursor and NaBH4 as both presodiation agent and B sources. The high doping levels of B and N in the resultant carbon materials lead to a promising Na+ storage capability (308 mAh g−1 at 0.05 A g−1) when served as the anode in SIBs. More importantly, desirable ICE as high as 96.1% was recorded for the obtained presodiated B, N co-doped carbon material benefiting from the pre-incorporated sodium, which passivates the irreversible reactive sites. This work provides a novel route to realize simultaneous presodiation and B, N co-doping within carbon materials, enabling promising Na+ storage capability and enhanced ICE for application in SIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.