Abstract

The emission of SO2 from the burning of fossil fuel has resulted in a severe atmospheric pollution. The development of efficient strategies for not only capturing but also utilizing SO2 is highly welcome. A simple, mild, and versatile method has been developed that exploits atmospheric SO2 in the synthesis of porous polymers. Inspired by the chemistry of sulfonamides, contorted or bulky monomers with multiple amine groups were cross-linked by SO2 molecules in the presence of Et3 N and I2 . The sulfonamide polymers have specific surface areas up to 211 m2 g-1 . In contrast to most porous polymers, the porous sulfonamide polymers (PSPs) are soluble in organic solvents, thus offering a chance to study their structures and molecular weights by liquid-state NMR spectroscopy and gel-permeation chromatography, respectively. Moreover, these PSPs can be easily processed into organic membranes. The current concept should encourage more studies to design porous polymers with SO2 or CO2 gases as linkages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.