Abstract

This article discussed the potential application of hydrothermally synthesized porous hydroxysodalite material synthesized from aluminosilicate clay material as a multifunctional adsorbent for fluoride and pathogen removal from groundwater. The efficiency of the material towards fluoride removal was evaluated using batch experiments while the efficacy against the E. coli strain was evaluated using well-assay diffusion method. The material showed a maximum fluoride adsorption capacity of 6.01mg/g at initial concentration range of 5 to 100mg/L when 1g/100mL adsorbent dosage was used at initial pH of 6 ± 0.5 after agitation time of 10min. The adsorption kinetics data fitted better to pseudo first order of reaction kinetics indicating the dominance of physiosorption adsorption mechanism while the adsorption isotherm data showed better fit to both Langmuir and Freundlich adsorption isotherm model confirming monolayer and multilayer adsorption. The material was successfully regenerated and reused for up to eight successive regeneration-reuse cycles. However, its efficiency was inhibited by the presence of Cl- and CO32-. The material also proven to have antimicrobial activity against E. coli strain. This study concluded that the porous hydroxysodalite material prepared in this study can be used as a multifunctional adsorbent for fluoride and pathogen removal from groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.