Abstract

The synthesis of porous CaTiO3 (CTO) nanotubes with controlled microstructure was demonstrated via a single-nozzle electrospinning approach. Homogenous sols comprising polyvinylpyrolidine (PVP), Pluronic F127 and CTO (metal salt) were electrospun, which resulted in fine CTO nanotubes due to phase separation phenomenon. PVP/CTO molar ratio was confirmed to induce the effective manipulation of its structural characteristics. Altering the ratio from 0.24m to 0.12m was found to result in the increased fiber diameter, from ~105nm to ~230nm, and the enhanced hollow structure (diameter of ~70nm). Further development of biocompatible inorganic CaTiO3 nanotubes with such tunable hollow structures provides a platform for sustained drug loading and delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.