Abstract

Bitumen upgrading involves the hydroconversion of larger molecules that require catalyst supports with meso- and/or macropores for access to the active sites. In this study, various activation processes were studied to activate delayed petroleum coke, which is a by-product of oil sands bitumen upgrading and an inexpensive source of carbon. The petroleum coke was subjected to steam, chemical (KOH, NaOH) and combined activation methods at 973 K and 1073 K. The produced materials were characterized with nitrogen physisorption at 77 K and scanning electron microscopy. Combined with the yields, the results suggested that the combination of steam with sodium or potassium increased the mesoporosity of the carbon samples possibly by a catalytic gasification mechanism. A mesopore volume of 0.39 cm3/g with a yield of 27% was achieved by simultaneously activating with sodium and steam. Washing the material after activation with sodium and before introducing steam produced the same mesoporosity but doubled the yield, confirming that steam alone is not effective at creating porosity. The accessibility of the larger pores was confirmed with the adsorption of asphaltenes from Athabasca extra-heavy crude oil. The capacity for asphaltene adsorption increased with increasing mesopore volume.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.