Abstract

This work aims to develop an eco-sound nano-bio-hybrid sorbent using sustainable materials for sorptive elimination of congo red and phosphates from aquatic environment. An amphipathic biopolymer derivative, high DS guar gum benzoate (GGBN) was used for entrapment of as synthesized calcium carbonate nanoparticles using solvent diffusion nano-precipitation technique. Designer nano-biohybrids were developed upon experimenting with various materials stoichiometry. SEM, XRD and EDX studies confirmed near-uniform impregnation of rhombohedral calcium carbonate crystals throughout the biopolymer matrix. Average pore size distribution and surface area of final product Ca-GGBNC, were estimated from NDLFT and BET methods respectively. Analysis of adsorption findings acquired at study temperature 27 ± 2 °C showed that the maximum adsorption capacity of Ca-GGBNC recorded qmax, 333.33 mg/g for congo red azo dye and that for phosphate was at 500 mg/g. Adsorptive removal was noted and both components followed pseudo second order kinetics. Intra-particle diffusion kinetics investigation disclosed that the boundary layer effect was prominent and the adsorption rates were not solely directed by the diffusion stage. Activation energy, Ea was to be estimated using Arrhenius equation at 56.136 and 47.015 KJ/mol for congo red and phosphates respectively. The calculated thermodynamic parameters(ΔG°, ΔH°, and ΔS°) revealed the spontaneous, feasible and endothermic sorption process. Owing to active surface area, spherical size, functional moiety and porous network, antibacterial properties of nanobiohybrid were persistent and MIC against E. coli and S. aureus were recorded at 200 μg/mL and 350 μg/mL respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call