Abstract

In this work, we successfully synthesized porous C/Fe3O4 microspheres by spray pyrolysis at 700ºC with a sodium nitrate (NaNO3) additive in the precursor solution. Furthermore, we studied their electrochemical properties as anode material for Li-ion batteries. The systematic studies by various characterization techniques show that NaNO3 catalyzes the carbonization of sucrose and enhances the crystallization of Fe3O4. Moreover, an aqueous etching can easily remove sodium compounds to produce porous C/Fe3O4 microspheres with large surface areas and pore volumes. The porous C/Fe3O4 microspheres exhibit a reversible capacity of ~780 mAh g–1 in the initial cycles and ~520 mAh g–1 after 30 cycles at a current density of 50 mA g–1. Moreover, a reversible capacity of ~400 mAh g–1 is attainable after 200 cycles, even at a high current density of 500 mA g–1. The wide range of pores produced from the removal of sodium compounds might enable easy electrolyte penetration and facilitate fast Li-ion diffusion, while the N-doping can promote the electronic conductivity of the carbon. These features of porous C/Fe3O4 microspheres led to the improved electrochemical properties of this sample.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.