Abstract
In this work, and for the first time, fly ash (FA)-based geopolymer (d = 2.6 mm) spheres were used to extract methylene blue from synthetic wastewaters. The influence of sorption time, dye initial concentration and adsorbent amount on the dye removal efficiency and uptake by the porous spheres was evaluated. The adsorbents' recyclability and their dye fixation efficiency were also considered. The initial dye concentration strongly affected the uptake and removal efficiency by the porous bodies, the former rising from 1.1 to 30.1 mg/g when the dye initial concentration jumped from 10 to 250 ppm, and the latter increasing from 82.3% to 94.3% when the dye initial concentration varied from 10 to 125 ppm. Results showed a much faster (24 h) and higher (30.1 mg/g) methylene blue uptake in comparison with the other bulk-type geopolymers reported to date (30 h; 15.4 mg/g). The cumulative methylene blue uptake shown by these innovative spheres (79.7 mg/g) surpasses all other powdered geopolymer adsorbents, being among the highest values ever reported for geopolymers. The adsorbent was successfully regenerated and reused eight times. Regeneration was found to negatively affect the MB uptake, but nevertheless, even after eight regeneration cycles a very high MB removal efficiency (83%) was maintained. The use of these bulk-type waste-based geopolymer adsorbents is a low-cost, more eco-friendly, safer and easier alternative to the use of powdered adsorbents in wastewater treatment systems, since these ∼3 mm spheres may be used directly in packed beds, and were produced using significant amounts of waste material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.