Abstract
In this study, we investigated the preparation conditions of polystyrene (PS)@TiO2 core–shell particles and their photocatalytic activity during the decomposition of methylene blue (MB). TiO2 shells were formed on the surfaces of PS particles using the sol–gel method. Homogeneous PS@TiO2 core–shell particles were obtained using an aqueous NH3 solution as the promoter of the sol–gel reaction and stirred at room temperature. This investigation revealed that the temperature and amount of the sol–gel reaction promoter influenced the morphology of the PS@TiO2 core–shell particles. The TiO2 shell thickness of the PS@TiO2 core–shell particles was approximately 5 nm, as observed using transmission electron microscopy. Additionally, Ti elements were detected on the surfaces of the PS@TiO2 core–shell particles using energy-dispersive X-ray spectroscopy analysis. The PS@TiO2 core–shell particles were used in MB decomposition to evaluate their photocatalytic activities. For comparison, we utilized commercial P25 and TiO2 particles prepared using the sol–gel method. The results showed that the PS@TiO2 core–shell particles exhibited higher activity than that of the compared samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.