Abstract

In this study, it was aimed to synthesize catalytically active, high surface area carbon nanotubes (CNTs) by means of nitrogen doping (N-doping). The synthesized nitrogen doped carbon nanotubes (N-CNTs) were used as Pt catalyst support in order to improve oxygen reduction reaction (ORR) kinetics at the cathode electrode in PEM fuel cell. Polypyrrole (PPy) was served as both carbon and nitrogen source and FeCl3 solution was used as oxidizing agent in the synthesis procedure of N-CNTs. Chemical activation of the materials was made with potassium hydroxide (KOH) solution during 12 and 18 h time periods. It was considered that activation period is of great importance on the properties of the synthesized PPy based N-CNTs. 12 h activated N-CNTs gave higher surface area (1607.2 m2/g) and smaller micropore volume (0.355 cm3/g) in comparison to 18 h activated N-CNTs having smaller surface area (1170.7 m2/g) and higher micropore volume (0.383 cm3/g). PEM fuel cell performance results showed that 12 h activated N-CNTs are better catalyst supports than 18 h activated N-CNTs for Pt nanoparticle decoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call