Abstract

Phosphonylation of polysiloxane and cyclosiloxane oligomers is described. Hydrosilylation of vinylbenzyl chloride (VBC) with a poly(methylhydrosiloxane), or its cyclic monomer, followed by phosphonylation with triethyl phosphite leads to the production of stable phosphonosiloxanes that are characterized by SiC and CP bonds. The polymer, which is a liquid with a glass transition temperature of −38.3 °C, is soluble in alcohols and an alcohol and water mixture. The phosphonylated siloxanes dissolve and chelate uranyl nitrate and transition metal salts. The hydrosilylation of VBC yields α and β isomers: SiCH2CH2 and SiCH(CH3); the ratio between these two depends upon the type of solvent and the reaction conversion. A kinetic study of the hydrosilylation reaction of VBC suggests a second order in respect to the reactants. The reaction rate is dependent upon the catalyst concentration and temperature. Hydrosilylation of vinylbenzyl phosphonate could not be accomplished with the platinum (complex) catalyst; this is attributed to the presence of phosphoryl groups that are strong electron donors. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4043–4053, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.