Abstract

In this study, poly(N-methylolacrylamide)/polymethylacrylamide (PNMA/PMAA) hybrids were produced successfully by frontal free-radical polymerization at ambient pressure. In a typical run, the appropriate amounts of reactants (N-methylolacrylamide, NMA; methylacrylamide, MAA) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide at ambient temperature. Frontal polymerization (FP) was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self-propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. The dependences of the front velocity and front temperature on the initiator concentration, reactant dilution, and NMA/MAA components were thoroughly investigated. The front temperatures were between 69 and 116 °C, depending on the persulfate concentration. We have also investigated the FP of PNMA/PMAA hybrids with N-methyl-2-pyrrolidone as solvent. Results show that FP can be exploited as a means for the preparation of PNMA/PMAA hybrids with the potential advantage of higher throughput compared to the traditional mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call