Abstract

The reversible addition–fragmentation chain transfer (RAFT) polymerization technique was used to synthesize random copolymers of poly(ethylene glycol) methyl ether acrylate) (PEGA) and n-butyl acrylate (BA) and terpolymers of acrylic acid (AA), PEGA and BA with a trithiocarbonate reactive end-group. These macromolecular RAFT agents (macro-RAFTs) were subsequently adsorbed at the surface of size-monodisperse colloidal silica particles with diameters varying between 40 and 450 nm. Adsorption isotherms for both macro-RAFTs could be well fitted to the Langmuir adsorption model, the AA-based macro-RAFT agent showing however a lower maximum adsorption. The adsorbed macro-RAFT agents were subsequently chain extended with a mixture of methyl methacrylate (MMA) and BA by starved feed emulsion polymerization. Cryo-TEM analysis of the resulting hybrid latexes synthesized in the presence of the P(AA-co-PEGA-co-BA) terpolymers resulted in multipod-like particles while the P(PEGA-co-BA) copolymers showed the formation ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call