Abstract

The synthesis of high-molecular-weight (Mn up to 62,000 g/mol) polyesters has been achieved by acyclic diene metathesis (ADMET) polymerization of α,ω-dienes prepared from biobased bis(undec-10-enoate) and diols [ethylene glycol (M1), propylene glycol (M2), 1,9-nonanediol (M3), 1,4-benzenedimethanol (M4), and hydroquinone (M5)] using ruthenium-carbene catalysts. Replacement of the solvent during the ADMET polymerization was effective for obtainment of the high-molecular-weight polymers (expressed as P1-P5). The melting temperatures (Tm) in the resultant polyesters were dependent upon the diol (middle) segment employed, and the polymer prepared from M5 exceeded 100 °C (a Tm value of 122.5 °C). The polymerization of M3 and M4 in the presence of 1,4-cis-diacetoxy-2-butene (DAB, as the chain transfer agent) afforded the telechelic polyesters [P3(OAc)2 and P4(OAc)2, respectively] containing acetoxy end groups exclusively. The resultant polymers containing hydroxy group termini [P3(OH)2 and P4(OH)2], prepared by the selective deprotection of the acetoxy end groups, were treated with AlEt3 followed by addition of ε-caprolactone to afford the ABA-type triblock copolymers exclusively, through a living ring-opening polymerization. The depolymerization (hydrolysis) under basic conditions (NaOH aqueous solution) of P3 was explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.