Abstract
In this work, Cu(2+)-immobilized magnetic graphene@polydopamine (magG@PDA@Cu(2+)) composites were synthesized for the first time. Magnetic graphene prepared via a hydrothermal reaction were easily encapsulated by a layer of polydopamine through the oxidative polymerization of dopamine in alkaline buffer, and it was conveniently modified with Cu(2+) ions afterward. The as-prepared magG@PDA@Cu(2+) composites were endowed with strong magnetic responsivness, excellent dispersibility and biological compatibility. We applied the novel nanocomposites to the enrichment and identification of low-concentration standard peptides, peptides in standard protein digestions, endogenous peptides in human urine and serum. The enriched peptides were eluted and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The magG@PDA@Cu(2+) composites were proved to exhibit great affinity to both hydrophobic and hydrophilic peptides, thus providing a rapid and facile approach to the extraction of low-concentration peptides. Notably, peptides at an extremely low concentration of 10 pM could be detected by MALDI-TOF MS after enrichment with magG@PDA@Cu(2+) composites. The results demonstrated that the magG@PDA@Cu(2+) composite is a promising candidate for the enrichment of low-abundance peptides for mass spectrometry analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.