Abstract

Surface modification can effectively improve the ability of hydrochar to capture pollutants from wastewater. In this work, polyaminophosphonated-functionalized hydrochar (PAP-HC) was successfully synthesized by a chemical grafting approach and applied efficiently to adsorb aqueous Pb(II). Properties of PAP-HC were characterized by ICP, FTIR, XPS, SEM-EDS, elemental analysis, zeta potential, and BET. The Pb(II) adsorbing behavior of PAP-HC was tested by batch adsorbing assays, including the pH impact, uptake kinetics, sorption isotherms, sorption thermodynamics, and PAP-HC recycling. Sorption isotherms were better illustrated by a Langmuir equation, while the kinetic profile was modeled by a pseudo-second-order equation. Adsorption of Pb(II) onto PAP-HC mainly relied on chelating Pb(II) with aminophosphonate groups of PAP-HC by XPS and FTIR analyses. The actual adsorbed amount of PAP-HC maximized to 179.92mg·g-1 at 298K, which showed high adsorption ability. Nitric acid and hydroxide solutions were suitable for desorption of adsorbed Pb(II) and activated PAP-HC, respectively. PAP-HC can be reused for at least five cycles without obvious change in adsorption performance. The results suggest PAP-HC is a prospective adsorbent to capture Pb(II) from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call