Abstract

Poly(vinyl alcohol), PVA, is the most potent polymeric ice recrystallisation inhibitor (IRI), mimicking a complex function of ice binding proteins. The IRI activity of PVA scales with its molecular weight and hence broad molecular weight distributions in free radical-derived PVAs lead to activity measurements dominated by small amounts of heavier fractions. Well-defined PVA can be prepared by thermally initiated RAFT/MADIX polymerization using xanthates by the polymerization of the less activated monomer vinyl acetate. The low conversions and molecular weights obtained during this approach, often requires feeding of additional initiator and bulk polymerization. Here we employ bismuth oxide photo-RAFT in solution, using blue light (450 nm), rather than previously reported white light, to obtain a library of PVA's. The use of blue light enabled quantitative conversion and acceptable dispersities. Purple light (380 nm) was also used, but asymmetric molecular weight distributions were obtained in some cases. High concentrations of high molecular weight PVA is known to form cryogels during freeze/thaw which has led to speculation this might limit the use of PVA in environments where the temperature cycles e.g. the construction industry. After 4 freeze/thaw cycles there was only small changes in observable IRI for all synthesised PVAs and two commercial standards. In an extended test, activity was retained after 100 freeze/thaw cycles, mitigating concerns that PVA could not be used in situations where freeze/thaw cycles occur. This work presents a convenient method to obtain well-defined PVAs for cryoscience studies compared to conventional thermal-RAFT and indicates that cryogelation concerns may not prevent their use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call