Abstract
A novel well-defined macromonomer consisting of different types of monomers in polymerization mechanisms was synthesized for the first time through the SmI2-induced transformation. The macromonomer, ω-methacryloylpoly-(tetrahydrofuran-b-e-caprolactone), was prepared by the reaction of methacryloyl chloride with living poly(tetrahydrofuran-b-e-caprolactone) [poly(THF-b-CL)] which was obtained by the two-electron reduction of the cationic growing center of poly(THF) by samarium iodide (SmI2) followed by the polymerization of CL. 1H NMR analysis indicated the quantitative introduction of the methacryloyl group onto the polymer end. The molecular weight distribution of the macromonomer was relatively narrow, and the unit ratio of THF to CL could be controlled by both polymerization time of THF and the amount of CL, resulting from the living nature of both CL- and THF-polymerizations. Radical copolymerization of the produced macromonomers with methyl methacrylate in the presence of AIBN resulted in a polymethacrylate backbone grafted with poly(THF-b-CL) block copolymers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.