Abstract
Here, we report the successful synthesis of series of stimuli responsive amphiphilic diblock copolymers (SRABCs) poly(N-isopropylacrylamide-b-N-vinylcarbazole) [poly(NIPAAm-b-NVK)] through reversible addition fragmentation chain transfer (RAFT) polymerization. Copolymers with fixed hydrophilic [poly(NIPAAm)] block length and variable (with three different) hydrophobic [poly(NVK)] block lengths were synthesized and the block length ratio was confirmed from their molecular weight data. The self-assembly nature of synthesized block copolymers was confirmed by determining critical micelle concentration (CMC). Self-assembled block copolymers showed rice-grain like morphology for copolymers having equivalent hydrophobic/hydrophilic chain length but in case of block copolymers having smaller and bigger hydrophobic chain length with respect to hydrophilic chain length displayed vesicular morphology. The thermo and pH responsiveness of the block copolymers was found to be influenced by variation in length and chemical composition of the blocks. Due to their thermo and pH responsiveness resulted self-assembled structures underwent morphology transitions from vesicular and rice grain like to micellar structure in aqueous medium. The probable applications of the studied stimuli responsive amphiphilic diblock copolymers can be found in the nanotechnology and biotechnology are indicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.