Abstract

The synthesis of microbial polyhydroxyalkanoate is investigated in this work for it potential application as drug carrier for cancer therapy. The bacterial isolate Bacillus cereus FB11 has synthesized poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer under nutrient stress conditions using glucose as a sole carbon source. The FTIR spectrum of the purified copolymer showed the characteristic absorption bands at 1,719, 1,260 and 2,931 cm(-1) attributing to C=O, C-O stretching and C-H vibrations, respectively. The result of (1)H-NMR confirmed that it was composed of 88 mol % of 3-hydroxybutyrate and 12 mol % of 3-hydroxyvalerate monomeric subunits. The nanoparticles were fabricated from copolymer and used as a carrier for anticancer drug ellipticine. The in vitro drug release studies showed that % inhibition of A549 cancer cell line receiving ellipticine loaded poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles was two-fold higher in comparison to ellipticine alone. This drug delivery system offers exciting possibilities for cancer therapy by increasing the bioavailability of anti-neoplastic drug to the tumor site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.