Abstract

The microbial strain Azotobacter vinelandii UWD was grown under conditions of simulated microgravity in the National Aeronautics and Space Administration (NASA) Bioreactor. Bacterial growth in simulated microgravity differed significantly from that observed in conventional shake flask experiments: Cells tended to grow in a cluster-like pattern and polymer production started immediately after exposing them to conditions of simulated microgravity, and no lag time was observed. It was imperative to differentiate between the effects derived from microgravity and those imposed by the altered oxygen supply in the bioreactor. Aeration conditions were studied in both reactor types and a gas supply profile was developed for the bioreactor. This supply profile allowed for similar amounts of dissolved oxygen in the bioreactor and the shake flask in the initial stage of the fermentation and, therefore, for an evaluation of the effects of microgravity on biopolyester-producing bacteria. Since the optical density that is conventionally used as a measure for the cell growth could not be used due to the cluster-like growth pattern of the cells, it was determined that bacterial growth behavior in the bioreactor can be monitored through glucose or oxygen consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.