Abstract

Energy storage devices require separators with sufficient lithium-ion transfer and restrained lithium dendrite growth. Herein, PMIA separators tuned using MIL-101(Cr) (PMIA/MIL-101) were designed and fabricated by a one-step casting process. At 150 °C, the Cr3+ in the MIL-101(Cr) framework sheds two water molecules to form an active metal site that complexes with PF6- in the electrolyte on the solid/liquid interface, leading to improved Li+ transport. The Li+ transference number of the PMIA/MIL-101 composite separator was found to be 0.65, which is about 3 times higher than that of the pure PMIA separator (0.23). Additionally, MIL-101(Cr) can modulate the pore size and porosity of the PMIA separator, while its porous structure also functions as additional storage space for the electrolyte, enhancing the electrochemical performance of the PMIA separator. After 50 charge/discharge cycles, batteries assembled using the PMIA/MIL-101 composite separator and the PMIA separator presented a discharge specific capacity of 120.4 and 108.6 mAh/g, respectively. The battery assembled using PMIA/MIL-101 composite separator significantly outperformed both the batteries assembled from pure PMIA and commercial PP separators in terms of cycling performance at 2 C, displaying a discharge specific capacity of 1.5 times that of the battery assembled from PP separators. The chemical complexation of Cr3+ and PF6- plays a critical role to improve the electrochemical performance of the PMIA/MIL-101 composite separator. The tunability and enhanced properties of the PMIA/MIL-101 composite separator make it a promising candidate for use in energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call