Abstract

Coupling surface plasmon with semiconductor has been demonstrated to be an efficient strategy for improving the photocatalytic performance of the photocatalyst. The sphere-like Ag/AgI/Bi5O7I composites were synthesized by a hydrothermal-decomposition process, followed by an in-situ ion exchange reaction. Under LED lamp irradiation (400 < λ < 800 nm), the as-prepared Ag/AgI/Bi5O7I displayed a great enhancement in photocatalytic activities for the degradation of organic dyes (Rhodamine B and methyl orange), as compared with the pure orthorhombic phase Bi5O7I. The scavenger test results indicated that the photo-generated h+ would play an important role in the degradation of organic pollutants. Moreover, the Ag/AgI/Bi5O7I nanocomposite generates high photoactivity in the cycling photocatalytic test. According to the experimental results, the possible photocatalytic degradation mechanism of Ag/AgI/Bi5O7I was also proposed. From our perspective, this advantage is mainly ascribed to two aspects: (i) the surface plasmon resonance effect of Ag nanoparticles; (ii) the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/Bi5O7I system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call