Abstract

A plasma-reduced graphene oxide/lithium titanate oxide (PrGO/LTO) composite is prepared as an anode material to enhance the performance of lithium-ion capacitors (LICs). The PrGO/LTO composite is synthesized by mixing graphene oxide (GO) and LTO, followed by a series of freeze-drying and plasma-treatment processes. PrGO forms a porous three-dimensional (3D) structure with a large surface area, effectively preventing the restacking of PrGO while covering LTO. The GO/LTO mixing ratio is controlled to optimize the final structure for LIC applications. In lithium-ion half-cell assembly, the PrGO/LTO-based anode with an 80% mixing ratio exhibits the highest specific capacity of 73.0 mAh g−1 at 20 C. This is attributed to the optimized ratio for achieving high energy density from LTO and high power density from PrGO. In a LIC full-cell comprising PrGO/LTO as the anode and activated carbon as the cathode, the energy and power densities at 1 A g−1 are 40.3 Wh kg−1 and 2000 W kg−1, respectively, with a specific capacitance of 36.3 F g−1 and capacitance retention of 94.1% after 2000 cycles. Its outstanding performance, obtained from incorporating 3D-structured PrGO with LTO at an optimized ratio, lowers the cell resistance and provides efficient lithium-ion diffusion pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.